¿Te ayudamos? 900 49 47 47

Curso Microsoft MCSA: SQL 2016 Business Intelligence Development

Curso en Madrid (Madrid)

CAS TRAINING

TExto no se de donde sale

foto del centro
foto del centro foto del centro foto del centro foto del centro
Ubicacion

Ciudad (Provincia) Calle Ver mapa Como llegar

Resumen

Nuestro portal te presenta el curso de "Microsoft MCSA: SQL 2016 Business Intelligence Development " impartido por Cas Training

Temario completo de este curso

MOC 20767: Implementing a SQL Data Warehouse
  • 1. Introduction to Data Warehousing
  • 1.1. Overview of Data Warehousing
  • 1.2. Considerations for a Data Warehouse Solution
  • 2. Planning Data Warehouse Infrastructure
  • 2.1. Considerations for Building a Data Warehouse
  • 2.2. Data Warehouse Reference Architectures and Appliances
  • 3. Designing and Implementing a Data Warehouse
  • 3.1. Logical Design for a Data Warehouse
  • 3.2. Physical Design for a Data Warehouse
  • 4. Columnstore Indexes
  • 4.1. Introduction to Columnstore Indexes
  • 4.2. Creating Columnstore Indexes
  • 4.3. Working with Columnstore Indexes
  • 5. Implementing an Azure SQL Data Warehouse
  • 5.1. Advantages of Azure SQL Data Warehouse
  • 5.2. Implementing an Azure SQL Data Warehouse
  • 5.3. Developing an Azure SQL Data Warehouse
  • 5.4. Migrating to an Azure SQ Data Warehouse
  • 6. Creating an ETL Solution
  • 6.1. Introduction to ETL with SSIS
  • 6.2. Exploring Source Data
  • 6.3. Implementing Data Flow
  • 7. Implementing Control Flow in an SSIS Package
  • 7.1. Introduction to Control Flow
  • 7.2. Creating Dynamic Packages
  • 7.3. Using Containers
  • 8. Debugging and Troubleshooting SSIS Packages
  • 8.1. Debugging an SSIS Package
  • 8.2. Logging SSIS Package Events
  • 8.3. Handling Errors in an SSIS Package
  • 9. Implementing an Incremental ETL Process
  • 9.1. Introduction to Incremental ETL
  • 9.2. Extracting Modified Data
  • 9.3. Temporal Tables
  • 10. Enforcing Data Quality
  • 10.1. Introduction to Data Quality
  • 10.2. Using Data Quality Services to Cleanse Data
  • 10.3. Using Data Quality Services to Match Data
  • 11. Using Master Data Services
  • 11.1. Master Data Services Concepts
  • 11.2. Implementing a Master Data Services Model
  • 11.3. Managing Master Data
  • 11.4. Creating a Master Data Hub
  • 12. Extending SQL Server Integration Services (SSIS)
  • 12.1. Using Custom Components in SSIS
  • 12.2. Using Scripting in SSIS
  • 13. Deploying and Configuring SSIS Packages
  • 13.1. Overview of SSIS Deployment
  • 13.2. Deploying SSIS Projects
  • 13.3. Planning SSIS Package Execution
  • 14. Consuming Data in a Data Warehouse
  • 14.1. Introduction to Business Intelligence
  • 14.2. Introduction to Reporting
  • 14.3. An Introduction to Data Analysis
  • 14.4. Analyzing Data with Azure SQL Data Warehouse

MOC 20768: Developing SQL Data Models
  • 1. Introduction to Business Intelligence and Data Modeling
  • 1.1. Introduction to Business Intelligence
  • 1.2. The Microsoft business intelligence platform
  • 2. Creating Multidimensional Databases
  • 2.1. Introduction to multidimensional analysis
  • 2.2. Creating data sources and data source views
  • 2.3. Creating a cube
  • 2.4. Overview of cube security
  • 3. Working with Cubes and Dimensions
  • 3.1. Configuring dimensions
  • 3.2. Define attribute hierarchies
  • 3.3. Sorting and grouping attributes
  • 4. Working with Measures and Measure Groups
  • 4.1. Working with measures
  • 4.2. Working with measure groups
  • 5. Introduction to MDX
  • 5.1. MDX fundamentals
  • 5.2. Adding calculations to a cube
  • 5.3. Using MDX to query a cube
  • 6. Customizing Cube Functionality
  • 6.1. Implementing key performance indicators
  • 6.2. Implementing actions
  • 6.3. Implementing perspectives
  • 6.4. Implementing translations
  • 7. Implementing a Tabular Data Model by Using
  • Analysis Services
  • 7.1. Introduction to tabular data models
  • 7.2. Creating a tabular data model
  • 7.3. Using an analysis services tabular model in an enterprise BI solution
  • 8. Introduction to Data Analysis Expression (DAX)
  • 8.1. DAX fundamentals
  • 8.2. Using DAX to create calculated columns and measures in a tabular data model
  • 9. Performing Predictive Analysis with Data Mining
  • 9.1. Overview of data mining
  • 9.2. Using the data mining add-in for Excel
  • 9.3. Creating a custom data mining solution
  • 9.4. Validating a data mining model
  • 9.5. Connecting to and consuming a data mining model


Ver más ...

Curso Microsoft MCSA: SQL 2016 Business Intelligence Development

Curso en Madrid (Madrid)

CAS TRAINING

Nuestro portal te presenta el curso de "Microsoft MCSA: SQL 2016 Business Intelligence Development " impartido por Cas Training

Consultar precio

Temario completo de este curso

MOC 20767: Implementing a SQL Data Warehouse

  • 1. Introduction to Data Warehousing
  • 1.1. Overview of Data Warehousing
  • 1.2. Considerations for a Data Warehouse Solution
  • 2. Planning Data Warehouse Infrastructure
  • 2.1. Considerations for Building a Data Warehouse
  • 2.2. Data Warehouse Reference Architectures and Appliances
  • 3. Designing and Implementing a Data Warehouse
  • 3.1. Logical Design for a Data Warehouse
  • 3.2. Physical Design for a Data Warehouse
  • 4. Columnstore Indexes
  • 4.1. Introduction to Columnstore Indexes
  • 4.2. Creating Columnstore Indexes
  • 4.3. Working with Columnstore Indexes
  • 5. Implementing an Azure SQL Data Warehouse
  • 5.1. Advantages of Azure SQL Data Warehouse
  • 5.2. Implementing an Azure SQL Data Warehouse
  • 5.3. Developing an Azure SQL Data Warehouse
  • 5.4. Migrating to an Azure SQ Data Warehouse
  • 6. Creating an ETL Solution
  • 6.1. Introduction to ETL with SSIS
  • 6.2. Exploring Source Data
  • 6.3. Implementing Data Flow
  • 7. Implementing Control Flow in an SSIS Package
  • 7.1. Introduction to Control Flow
  • 7.2. Creating Dynamic Packages
  • 7.3. Using Containers
  • 8. Debugging and Troubleshooting SSIS Packages
  • 8.1. Debugging an SSIS Package
  • 8.2. Logging SSIS Package Events
  • 8.3. Handling Errors in an SSIS Package
  • 9. Implementing an Incremental ETL Process
  • 9.1. Introduction to Incremental ETL
  • 9.2. Extracting Modified Data
  • 9.3. Temporal Tables
  • 10. Enforcing Data Quality
  • 10.1. Introduction to Data Quality
  • 10.2. Using Data Quality Services to Cleanse Data
  • 10.3. Using Data Quality Services to Match Data
  • 11. Using Master Data Services
  • 11.1. Master Data Services Concepts
  • 11.2. Implementing a Master Data Services Model
  • 11.3. Managing Master Data
  • 11.4. Creating a Master Data Hub
  • 12. Extending SQL Server Integration Services (SSIS)
  • 12.1. Using Custom Components in SSIS
  • 12.2. Using Scripting in SSIS
  • 13. Deploying and Configuring SSIS Packages
  • 13.1. Overview of SSIS Deployment
  • 13.2. Deploying SSIS Projects
  • 13.3. Planning SSIS Package Execution
  • 14. Consuming Data in a Data Warehouse
  • 14.1. Introduction to Business Intelligence
  • 14.2. Introduction to Reporting
  • 14.3. An Introduction to Data Analysis
  • 14.4. Analyzing Data with Azure SQL Data Warehouse

MOC 20768: Developing SQL Data Models
  • 1. Introduction to Business Intelligence and Data Modeling
  • 1.1. Introduction to Business Intelligence
  • 1.2. The Microsoft business intelligence platform
  • 2. Creating Multidimensional Databases
  • 2.1. Introduction to multidimensional analysis
  • 2.2. Creating data sources and data source views
  • 2.3. Creating a cube
  • 2.4. Overview of cube security
  • 3. Working with Cubes and Dimensions
  • 3.1. Configuring dimensions
  • 3.2. Define attribute hierarchies
  • 3.3. Sorting and grouping attributes
  • 4. Working with Measures and Measure Groups
  • 4.1. Working with measures
  • 4.2. Working with measure groups
  • 5. Introduction to MDX
  • 5.1. MDX fundamentals
  • 5.2. Adding calculations to a cube
  • 5.3. Using MDX to query a cube
  • 6. Customizing Cube Functionality
  • 6.1. Implementing key performance indicators
  • 6.2. Implementing actions
  • 6.3. Implementing perspectives
  • 6.4. Implementing translations
  • 7. Implementing a Tabular Data Model by Using
  • Analysis Services
  • 7.1. Introduction to tabular data models
  • 7.2. Creating a tabular data model
  • 7.3. Using an analysis services tabular model in an enterprise BI solution
  • 8. Introduction to Data Analysis Expression (DAX)
  • 8.1. DAX fundamentals
  • 8.2. Using DAX to create calculated columns and measures in a tabular data model
  • 9. Performing Predictive Analysis with Data Mining
  • 9.1. Overview of data mining
  • 9.2. Using the data mining add-in for Excel
  • 9.3. Creating a custom data mining solution
  • 9.4. Validating a data mining model
  • 9.5. Connecting to and consuming a data mining model


 
ver temario completo
 

Preguntas a exalumnos

Más cursos relacionados de Informática y tecnología

  •  OBS Business School

    Máster en Seguridad de la Información Empresarial

    Máster online 6.500 € OBS Business School

    Objetivos: Mediante el estudio de los contenidos, publicados en Lectiva.com y propuestos por el centro, adquirirás nociones generales sobre la seguridad de la información, el espionaje industrial o ...

  •  Carval Formación

    Curso de Cerrajería Artística

    Curso a distancia 149 € Carval Formación

    Este curso permite adquirir los conocimientos necesarios para el buen desempeño de un oficio. Se exponen conocimientos generales de la materia, al igual que trata de forma específica, de conceptos ...

  •  DEUSTO BUSINESS SCHOOL-UNIVERSIDAD DE DEUSTO

    Programa Big Data y Negocios

    Curso en Madrid 3.900 € DEUSTO BUSINESS SCHOOL-UNIVERSIDAD DE DEUSTO

    Objetivos: El programa posibilita:Alinear iniciativas de Big Data a la estrategia del negocio.Entender el proceso de producción de datos.Desarrollar una organización guiada por los datos.Definir ...

  •  DEUSTO BUSINESS SCHOOL-UNIVERSIDAD DE DEUSTO

    Programa de Innovación en Ciberseguridad

    Curso en Madrid 3.000 € DEUSTO BUSINESS SCHOOL-UNIVERSIDAD DE DEUSTO

    Objetivos: 1. Poner en valor, en el contexto nacional e internacional, la importancia de la ciberseguridad en el ámbito público y privado.2. Conocer con que herramientas legales pueden enfrentarse ...

  •  OBS Business School

    Máster en Data Management e Innovación Tecnológica

    Máster online 6.500 € OBS Business School

    Objetivos: Conocer qué es el Data Management y el Big Data, su impacto en las organizaciones y los beneficios que puede aportar su adopción.Identificar las oportunidades de la Gestión Estratégica de ...

  •  NEGOCIOS Y ESTRATEGIA

    Máster en Big Data & Business Analytics

    Máster online Consultar precio NEGOCIOS Y ESTRATEGIA

    Cada día generamos millones de nuevos datos en la Red. La organización y procesamiento de estos datos para transformarlos en información útil es lo que conocemos como Big Data. Esta sobrecarga de ...

  •  Spain Business School - UCM

    Máster Analítica Web y Big Data

    Máster bonificable online 2.280 €2.850 €Descuento Spain Business School - UCM

    Objetivos: - Conocer, entender y aplicar las bases fundamentales de cualquier empresa, pero desde la visión del nuevo mercado, el digital. - Aprender a interpretar las conductas que los usuarios ...

Llamar gratis
Llamar gratis